Jake
Abstract:Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
Abstract:Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
Abstract:Code verifiers play a critical role in post-verification for LLM-based code generation, yet existing supervised fine-tuning methods suffer from data scarcity, high failure rates, and poor inference efficiency. While reinforcement learning (RL) offers a promising alternative by optimizing models through execution-driven rewards without labeled supervision, our preliminary results show that naive RL with only functionality rewards fails to generate effective unit tests for difficult branches and samples. We first theoretically analyze showing that branch coverage, sample difficulty, syntactic and functional correctness can be jointly modeled as RL rewards, where optimizing these signals can improve the reliability of unit-test-based verification. Guided by this analysis, we design syntax- and functionality-aware rewards and further propose branch- and sample-difficulty--aware RL using exponential reward shaping and static analysis metrics. With this formulation, CVeDRL achieves state-of-the-art performance with only 0.6B parameters, yielding up to 28.97% higher pass rate and 15.08% higher branch coverage than GPT-3.5, while delivering over $20\times$ faster inference than competitive baselines. Code is available at https://github.com/LIGHTCHASER1/CVeDRL.git
Abstract:Diffusion language models enable parallel token generation through block-wise decoding, but their irreversible commitments can lead to stagnation, where the reverse diffusion process fails to make further progress under a suboptimal context.We propose Reversible Diffusion Decoding (RDD), a decoding framework that introduces reversibility into block-wise diffusion generation. RDD detects stagnation as a state-dependent failure of the reverse process and enables efficient backtracking to earlier blocks without recomputation via cached model states. To avoid repeated failure trajectories, RDD applies confidence-guided re-masking to selectively reinitialize uncertain tokens while preserving reliable context.This reversible formulation allows decoding to recover from early commitment errors while maintaining the parallel efficiency of diffusion-based generation. Experiments show that RDD improves generation robustness and quality over baselines with minimal computational overhead.
Abstract:While current video generation focuses on text or image conditions, practical applications like video editing and vlogging often need to seamlessly connect separate clips. In our work, we introduce Video Connecting, an innovative task that aims to generate smooth intermediate video content between given start and end clips. However, the absence of standardized evaluation benchmarks has hindered the development of this task. To bridge this gap, we proposed VC-Bench, a novel benchmark specifically designed for video connecting. It includes 1,579 high-quality videos collected from public platforms, covering 15 main categories and 72 subcategories to ensure diversity and structure. VC-Bench focuses on three core aspects: Video Quality Score VQS, Start-End Consistency Score SECS, and Transition Smoothness Score TSS. Together, they form a comprehensive framework that moves beyond conventional quality-only metrics. We evaluated multiple state-of-the-art video generation models on VC-Bench. Experimental results reveal significant limitations in maintaining start-end consistency and transition smoothness, leading to lower overall coherence and fluidity. We expect that VC-Bench will serve as a pioneering benchmark to inspire and guide future research in video connecting. The evaluation metrics and dataset are publicly available at: https://anonymous.4open.science/r/VC-Bench-1B67/.
Abstract:Despite the remarkable progress in text-driven video editing, generating coherent non-rigid deformations remains a critical challenge, often plagued by physical distortion and temporal flicker. To bridge this gap, we propose NRVBench, the first dedicated and comprehensive benchmark designed to evaluate non-rigid video editing. First, we curate a high-quality dataset consisting of 180 non-rigid motion videos from six physics-based categories, equipped with 2,340 fine-grained task instructions and 360 multiple-choice questions. Second, we propose NRVE-Acc, a novel evaluation metric based on Vision-Language Models that can rigorously assess physical compliance, temporal consistency, and instruction alignment, overcoming the limitations of general metrics in capturing complex dynamics. Third, we introduce a training-free baseline, VM-Edit, which utilizes a dual-region denoising mechanism to achieve structure-aware control, balancing structural preservation and dynamic deformation. Extensive experiments demonstrate that while current methods have shortcomings in maintaining physical plausibility, our method achieves excellent performance across both standard and proposed metrics. We believe the benchmark could serve as a standard testing platform for advancing physics-aware video editing.
Abstract:The quadratic complexity of standard attention mechanisms poses a significant scalability bottleneck for large language models (LLMs) in long-context scenarios. While hybrid attention strategies that combine sparse and full attention within a single model offer a viable solution, they typically employ static computation ratios (i.e., fixed proportions of sparse versus full attention) and fail to adapt to the varying sparsity sensitivities of downstream tasks during inference. To address this issue, we propose Elastic Attention, which allows the model to dynamically adjust its overall sparsity based on the input. This is achieved by integrating a lightweight Attention Router into the existing pretrained model, which dynamically assigns each attention head to different computation modes. Within only 12 hours of training on 8xA800 GPUs, our method enables models to achieve both strong performance and efficient inference. Experiments across three long-context benchmarks on widely-used LLMs demonstrate the superiority of our method.
Abstract:Existing works increasingly adopt memory-centric mechanisms to process long contexts in a segment manner, and effective memory management is one of the key capabilities that enables large language models to effectively propagate information across the entire sequence. Therefore, leveraging reward models (RMs) to automatically and reliably evaluate memory quality is critical. In this work, we introduce MemoryRewardBench, the first benchmark to systematically study the ability of RMs to evaluate long-term memory management processes. MemoryRewardBench covers both long-context comprehension and long-form generation tasks, featuring 10 distinct settings with different memory management patterns, with context length ranging from 8K to 128K tokens. Evaluations on 13 cutting-edge RMs indicate a diminishing performance gap between open-source and proprietary models, with newer-generation models consistently outperforming their predecessors regardless of parameter count. We further expose the capabilities and fundamental limitations of current RMs in evaluating LLM memory management across diverse settings.
Abstract:A fundamental challenge in text-to-3D face generation is achieving high-quality geometry. The core difficulty lies in the arbitrary and intricate distribution of vertices in 3D space, making it challenging for existing models to establish clean connectivity and resulting in suboptimal geometry. To address this, our core insight is to simplify the underlying geometric structure by constraining the distribution onto a simple and regular manifold, a topological sphere. Building on this, we first propose the Spherical Geometry Representation, a novel face representation that anchors geometric signals to uniform spherical coordinates. This guarantees a regular point distribution, from which the mesh connectivity can be robustly reconstructed. Critically, this canonical sphere can be seamlessly unwrapped into a 2D map, creating a perfect synergy with powerful 2D generative models. We then introduce Spherical Geometry Diffusion, a conditional diffusion framework built upon this 2D map. It enables diverse and controllable generation by jointly modeling geometry and texture, where the geometry explicitly conditions the texture synthesis process. Our method's effectiveness is demonstrated through its success in a wide range of tasks: text-to-3D generation, face reconstruction, and text-based 3D editing. Extensive experiments show that our approach substantially outperforms existing methods in geometric quality, textual fidelity, and inference efficiency.
Abstract:Existing works increasingly adopt memory-centric mechanisms to process long contexts in a segment manner, and effective memory management is one of the key capabilities that enables large language models to effectively propagate information across the entire sequence. Therefore, leveraging reward models (RMs) to automatically and reliably evaluate memory quality is critical. In this work, we introduce $\texttt{MemoryRewardBench}$, the first benchmark to systematically study the ability of RMs to evaluate long-term memory management processes. $\texttt{MemoryRewardBench}$ covers both long-context comprehension and long-form generation tasks, featuring 10 distinct settings with different memory management patterns, with context length ranging from 8K to 128K tokens. Evaluations on 13 cutting-edge RMs indicate a diminishing performance gap between open-source and proprietary models, with newer-generation models consistently outperforming their predecessors regardless of parameter count. We further expose the capabilities and fundamental limitations of current RMs in evaluating LLM memory management across diverse settings.